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It is shown that Lam’s formulation of renormalization group theory [Phys. Fluids A 4, 1007 (1992)] is
essentially the physical space version of the spectral classical closure theory [Leslie and Quarini, J. Fluid

Mech. 91, 65 (1979)].

PACS number(s): 47.10.+g, 47.27.Gs

In this Brief Report, we demonstrate that Lam’s €—re-
normalization group theory (RNG) model [1] is essential-
ly the physical space version of the classical closure
theory [2] in spectral space and consider the correspond-
ing treatment of the eddy viscosity and energy back-

scatter. The incompressible Navier-Stokes (NS) equa-
tions are
v __ 1 2
—+v-Vv=——Vp+v,V°v, (1)
at p

where v, is the molecular viscosity, p is the density, and p
is the pressure and can be determined from (1) using
V-v=0. The external driving force that sustains the tur-
bulence and which acts in the very small wave-number
region is not included in (1) since it plays no part in the
energy cascade process in the inertial range [2].

As in both closure and RNG theories, the velocity field
is filtered into two components,

v=v<+v>, p=p<+p~, )
where the Fourier-transformed fields are

v;<(k,t)=G(kw;(k,t), (3)

v (k,t)=[1—G (k)]v;(k,?) . 4)

The sharp cutoff filter of classical closure theory is exact-
ly the same as the RNG technique of separating the
subgrid from the resolvable scales at the cutoff wave
number A,

0 ifk>A

Glk)= {1 if k<A . (3)

In the classical closure theory of Leslie and Quarini (LQ)
[2], the filtered NS equation is

v s (k,t)

3
§+[v0+vd(k)]k2

=M_,5, (k) [dpdqus (p,1)v;5(q,0)+fo(k,t), (6)

where Mg, (k) is the standard nonlinear coupling
coefficient [2,3]. For convenience, we have added to both
sides a wave-number dependent turbulent eddy viscosity
vg4(k), which is at the moment unspecified. The term
f (k,t) accounts for the Reynolds stress [2,4],

1063-651X/95/51(4)/3745(3)/$06.00 51

Rg,=vg (p,th; (q,1), ) )
the cross stress [2,4]
Cp, =vg (p,tv; (q,t)+vg (p, ) (q,t), (8)
and the added eddy viscosity v, (k)
falk,t)=vy(k)k? 5 (k,t)
+M 5, (k) [dpda[Cp,+Rp, ] - 9)

In (7) and (8), |p+q| <A. It is important to realize that
no random force has been inserted here.

In the Lam approach to ée~RNG [1], one works in
physical space rather than wave-number space. The ex-
act resolvable scale Navier-Stokes equations can be writ-
ten

‘—Q-—(vo%—vr)vz v<=—in S —V-(v<v<)+ghst

at
(10
where g is defined by
ght=V. (viv<—vv)—v V¥ <
=—V-2v>vS+v>v>)—v Vv < . (11)

Note that Lam has introduced a k-independent turbulent
eddy viscosity vy, which remains to be chosen. g is
generated by the filtering process. The term g™ in physi-
cal space corresponds to the term f(k,?) in wave-number
space, in Eq. (9). '

The classical theory proceeds from this point by the
use of certain “closure approximations” [2,3]. An equa-
tion for the resolvable spectral energy, E(k,t), can readily
be derived,

Ek,t)=T(k,t)+ T (k,t), (12)

()
a3 +2vk?

where T(k,t) is the resolvable scale energy transfer and
T~ (k,t) is the energy transfer caused by the cross and
Reynolds stresses [2], which can be put into the form
[2,5]

T>(k,t)=—2v (k)k2E(k,t)+ U (k) . (13)

3745 ©1995 The American Physical Society



3746 BRIEF REPORTS 51

U (k), which represents the backscatter of energy from
small to resolvable scales and is also the spectrum of the
correlation function of f, is given by

Uk)= fAdp dq B(k,p,q)E (p)E (q)G*(k)

X[1-G(p)G(q)]. (14)
v4(k), the drain eddy viscosity, is given by
valk)= fAdp dg A(k,p,9)E(@[1—G(p)G(g)]. (15

The integration domain is denoted by the expression A in
which p and/or ¢ > A. The explicit functional forms of 4
and B appearing in (14) and (15) are given in Leslie [3]
and LQ [2].

Instead of trying to compute g** using closure approx-
imations, Lam [1] simply tries to model its correlation
function based on physical arguments. In his view, f is
simply a guess of what g™ should be for k =A in the
resolvable scale Navier-Stokes equation. He noted that in
the absence of f, the energy spectrum of the flow, com-
puted from (6) driven by initial and/or boundary condi-
tions will have a Kolmogorov dissipation wave number
substantially smaller than A. The primary role of f is to
extend for the resolvable scale velocity field the inertial
range with a guaranteed Kolmogorov scaling for k =A
and beyond.

The forcing function in classical closure theory arises
from filtering at the small scales. In modeling the corre-
lation function of f, Lam [1] assumes the form

fast

by =2 1 —d+4—e¢ d+1
itk )f;(K0') = =6k (27)

XP;(k)o(k+k')dlowtea'), (16)

where w is frequency, & is the dissipation rate, d is the di-
mension of the physical space, II; is a constant, and
Py(k)=8;—k;k; /k2. A multiplicative factor involving
A*"€ is introduced to maintain dimensional consistency
for arbitrary €. It is of some interest to compare Eq. (16)
with the forcing correlation function introduced by
Yakhot and Orszag (YO) [6]

(il 0)f(,01) =5 6k 44 42m)d !

XP;;(k)8(k+k")d(w+w') , (17)

where © is a known constant determined by
2D,S,; /(2m)? T1=1.5946 (YO [6]) and S, is the area of a
d-dimensional unit sphere. This form [7] is assumed to
arise from forcing at k =0:

(ff)=8(k)E8(k+K') , (18)
with the use of Gel'fand’s &-function representation in
the limit of e—+4 and k —0,

8(k)=1in1(4—e)k1‘€ for k—0 . (19)

€—

To recover (17), it appears that (19) needs to be applied
for k0, without the (4—¢) factor.
Lam pointed out that the forcing correlation function,

Eq. (16), should peak around A; its magnitude should be
small for small k by an appropriate choice of v; and its
behavior for k >> A is unimportant and irrelevant for the
evolution of the resolved modes. Most importantly, the
correlation function now depends on A, while in e-RNG
[6,7], the correlation function is assumed to be “scale in-
variant.” The dimensionless parameter € in the correla-
tion function is now available as a freely adjustable pa-
rameter, and Lam used it to make the “predicted value”
of Kolmogorov constant acceptable. He showed that ei-
ther €=0 or €=0.923 yields good results.

The stochastic backscatter f, for isotropic homogene-
ous turbulence in three dimensions, has a k* spectrum to
lowest order in wave number k (e.g., Ref. [5]).

Specifically,

w E(p)]
U=k [ “dp ek,p,q(t)[——p’;—]— for k>0,  (20)
where 9k,p,q(t)=1/[/.Lk’p,q(t)+v0(k2+p2+q2)] and

K, p,q(?) is an eddy-damping rate of the third-order mo-
ments associated with the wave vectors k, p, and q.
Thus, Lam’s postulate (which was based on intuitive
physical arguments) that U (k) is small for small k is con-
sistent with classical closure theory.

The advantage of the classical theory is that the energy
equation is always satisfied and no restriction on the mag-
nitude of A is imposed—so long as A is in the inertial

range. On integrating (12) with respect to k for
0<k <A, we obtain
K _fi-e, 1)
ot »

where K is the integral of E(k) over the resolved wave
numbers, and & is defined by

6= ["1> (k= [ "2k, (KE(k)dk . (22)
0 0

II, the resolved energy transfer term, is given by

— A=

= T k.

M= [ Tk
The net eddy viscosity, v,(k,t), is defined [2,5,8,9] as

v, (k)=va(k)—v,(k) (23)
and v, (k, ), the backscatter viscosity, is given by

vy(k)=U(k)/[2k?E (k)] . (24)

From (15) and (24), one can show [10] that for k in the
inertial range and k <<A, the ratio of v, (k) to v, (k) is
equal to %(k/A)”/ 3. Spectral large-eddy simulations
(LES) of Lesieur [5] and Lesieur and Rogallo [11] was
based on the resolvable scale Navier-Stokes equation

-%+[vo+v,,(k)]k2 03 (k1)

=M, (k) [ [dpdqug (p,t)v;(q,0) . (25)

Lam emphasized that &, the energy dissipation rate of
the turbulent flow in question, must be related to the pa-
rameters of the turbulent eddies by an ad hoc postulate
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under his formulation. Lam’s choice [1] is
&= lim 2vp(A) [ “k2E(K)dk . (26)
L A— © T 0

The large A limiting process in (26) is needed to ensure
that the dissipation rate can be adequately evaluated us-
ing information available from the resolved modes alone.
In Lam’s approach, the value of A must be sufficiently
large such that the dissipation function &; as given by
(26) is independent of A. In physical variables, & is
defined by

2
u;<

axk

&L =vr(A) 27

The Smagorinsky result for v; is recovered if &; is elim-
inated between (27) and v(A)=C,6}*A7%3. In LES,
the Lam requirement that A must be large enough is
equivalent to requiring that (27), computed using data
only from resolved modes, be “grid size” independent. In
Lam’s view, an LES calculation must exhibit a Kolmo-
gorov spectrum using the resolved modes such that the
limiting process in (26) is respected. If it does not, then

the calculation would have no theoretical standing.
Physically, if A is sufficiently large (so that & is indepen-
dent of A), the contribution of back scattering to the dis-
sipation would be negligible. The random force f, the
surrogate of the g™, does not appear explicitly in the
final LES model of Lam: One needs only to provide a
profile of { ff) so as to introduce the adjustable parame-
ter € used in computing vr.

Thus, we find that Lam’s formulation of e-RNG [1] is
essentially the physical space version of the spectral clas-
sical closure theory [2] with v,(k) being replaced by a
phenomenological k-independent v, but which now de-
pends on arbitrary parameter e.
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